バッチ正規化の実装演習

はじめに

深層学習day2の「Section1:バッチ正規化」の実装演習を以下にまとめる。

実装演習

「2_3_batch_normalizaion.ipynb」のコードを参照した。

# 自分の環境で、ダウンロードした共通関数の格納フォルダのパス
import sys
sys.path.append('DNN_code_colab_lesson_1_2')
sys.path.append('DNN_code_colab_lesson_1_2/lesson_2')
import numpy as np
from collections import OrderedDict
from common import layers
from data.mnist import load_mnist
import matplotlib.pyplot as plt
from multi_layer_net import MultiLayerNet
from common import optimizer

# バッチ正則化 layer
class BatchNormalization:
    '''
    gamma: スケール係数
    beta: オフセット
    momentum: 慣性
    running_mean: テスト時に使用する平均
    running_var: テスト時に使用する分散
    '''
    def __init__(self, gamma, beta, momentum=0.9, running_mean=None, running_var=None):
        self.gamma = gamma
        self.beta = beta
        self.momentum = momentum
        self.input_shape = None

        self.running_mean = running_mean
        self.running_var = running_var  
        
        # backward時に使用する中間データ
        self.batch_size = None
        self.xc = None
        self.std = None
        self.dgamma = None
        self.dbeta = None

    def forward(self, x, train_flg=True):
        if self.running_mean is None:
            N, D = x.shape
            self.running_mean = np.zeros(D)
            self.running_var = np.zeros(D)
                        
        if train_flg:
            mu = x.mean(axis=0) # 平均
            xc = x - mu # xをセンタリング
            var = np.mean(xc**2, axis=0) # 分散
            std = np.sqrt(var + 10e-7) # スケーリング
            xn = xc / std
            
            self.batch_size = x.shape[0]
            self.xc = xc
            self.xn = xn
            self.std = std
            self.running_mean = self.momentum * self.running_mean + (1-self.momentum) * mu # 平均値の加重平均
            self.running_var = self.momentum * self.running_var + (1-self.momentum) * var #分散値の加重平均
        else:
            xc = x - self.running_mean
            xn = xc / ((np.sqrt(self.running_var + 10e-7)))
            
        out = self.gamma * xn + self.beta 
        
        return out

    def backward(self, dout):
        dbeta = dout.sum(axis=0)
        dgamma = np.sum(self.xn * dout, axis=0)
        dxn = self.gamma * dout
        dxc = dxn / self.std
        dstd = -np.sum((dxn * self.xc) / (self.std * self.std), axis=0)
        dvar = 0.5 * dstd / self.std
        dxc += (2.0 / self.batch_size) * self.xc * dvar
        dmu = np.sum(dxc, axis=0)
        dx = dxc - dmu / self.batch_size
        
        self.dgamma = dgamma
        self.dbeta = dbeta

        return dx
(x_train, d_train), (x_test, d_test) = load_mnist(normalize=True)

print("データ読み込み完了")


# batch_normalizationの設定 =======================
use_batchnorm = True
# use_batchnorm = False
# ====================================================

network = MultiLayerNet(input_size=784, hidden_size_list=[40, 20], output_size=10,
                        activation='sigmoid', weight_init_std='Xavier', use_batchnorm=use_batchnorm)

iters_num = 1000
train_size = x_train.shape[0]
batch_size = 100
learning_rate=0.01

train_loss_list = []
accuracies_train = []
accuracies_test = []

plot_interval=10


for i in range(iters_num):
    batch_mask = np.random.choice(train_size, batch_size)
    x_batch = x_train[batch_mask]
    d_batch = d_train[batch_mask]

    grad = network.gradient(x_batch, d_batch)
    for key in ('W1', 'W2', 'W3', 'b1', 'b2', 'b3'):
        network.params[key] -= learning_rate * grad[key]

        loss = network.loss(x_batch, d_batch)
        train_loss_list.append(loss)        
        
    if (i + 1) % plot_interval == 0:
        accr_test = network.accuracy(x_test, d_test)
        accuracies_test.append(accr_test)        
        accr_train = network.accuracy(x_batch, d_batch)
        accuracies_train.append(accr_train)
        
        print('Generation: ' + str(i+1) + '. 正答率(トレーニング) = ' + str(accr_train))
        print('                : ' + str(i+1) + '. 正答率(テスト) = ' + str(accr_test))
                

lists = range(0, iters_num, plot_interval)
plt.plot(lists, accuracies_train, label="training set")
plt.plot(lists, accuracies_test,  label="test set")
plt.legend(loc="lower right")
plt.title("accuracy")
plt.xlabel("count")
plt.ylabel("accuracy")
plt.ylim(0, 1.0)
# グラフの表示
plt.show()

この時の実行結果のグラフは次の通り。BatchNormalizationOn

次に、上記のコード中の「use_batchnorm = False」として実行した時のグラフは次の通り。

BatchNormalizationOff

「use_batchnorm」フラグは、MultiLayerNetクラス(multi_layer_net.pyに実装)に渡され、バッチ正規化を行っている。

上記のように、バッチ正規化により学習が安定して収束していることがわかる。


も参照してください